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We study the paths of fluid particles in velocity fields modelling rigidly rotating
velocity fields that occur in the concentric Taylor problem. We set up velocity fields
using the model of Davey, DiPrima & Stuart (1968) based on small-gap asymptotics.
This allows a numerical study of the Lagrangian properties of steady flow patterns in
a rotating frame. The spiral and Taylor vortex modes are integrable, implying that in
these cases almost all particle paths are confined to two-dimensional surfaces in the
fluid. For the case of Taylor vortices the motion on these surfaces is quasi-periodic,
whereas for spirals the particles propagate up or down the cylinder on these surfaces.

The non-axisymmetric modes we consider are wavy vortices, spirals, ribbons and
twisted Taylor vortices. All of these flows have the property that they are steady flows
when examined in a rotating frame of reference. For all non-axisymmetric modes
with the exception of spirals, we observe the existence of regions of chaotic mixing
within the fluid. We discuss mixing of the fluid by these flows with reference to the
pattern of stagnation points and some of the periodic trajectories within the fluid and
on the boundary.

1. Introduction
Little is at present understood about the geometrical structure of fully three-

dimensional steady and unsteady fluid flows and even less about the physics of
chaotic advection in these flows. In order to further our understanding there is a
need to explore the kinematic behaviour of fluid particles in laminar, fully three-
dimensional solutions of the Navier–Stokes equations. In an earlier paper (Ashwin
& King 1995) we investigated the particle paths given by DiPrima & Stuart’s (1975)
asymptotic solution for Taylor vortex flow between eccentric cylinders. In this paper
we investigate the particle paths given by the Davey, DiPrima & Stuart (1968) model
for non-axisymmetric flows between concentric rotating cylinders.

The Taylor–Couette apparatus has provided much insight into and a test-bed
for theories of incompressible fluid flows. Due to its simple symmetric form (two
axisymmetric rotating cylinders with a fluid between them) it has been used as a
paradigm for breakdown of laminar to turbulent flow. Many of the flow patterns
can be classified according to their symmetries; see, for example, Chossat & Iooss
(1994). On rotating the inner cylinder while keeping the outer cylinder stationary,
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Couette flow (consisting of two-dimensional flow in planes perpendicular to the axis)
becomes unstable to motion in the axial direction; this gives rise to Taylor vortex
flow at a critical value of the Taylor number. Increasing the Taylor number further
gives rise to secondary instabilities in the form of wavy vortex flow where a wave-like
disturbance propagates around the Taylor vortices. Rotating both cylinders can give
rise to a variety of other non-axisymmetric flows, for example spirals, ribbons and
twisted vortices, see e.g. Andereck, Liu & Swinney (1986).

The majority of investigations into flow patterns in the Taylor–Couette apparatus
have focused on the Eulerian properties of the flow. However, the Lagrangian
properties, necessary to understand the mixing properties of the flow, are often not
easily deducible from the Eulerian velocity field.

In Couette flow the constraints of two dimensions and rotational symmetry restrict
the particle paths to closed orbits. The rotational symmetry of three-dimensional
Taylor vortex flow means that it is effectively an integrable flow and almost all
particle paths are quasi-periodic. On breaking the continuous rotational symmetry
of the flow pattern, this reason for integrability is removed and we expect a non-
integrable flow pattern with a certain degree of chaotic mixing. Two ways in which
the rotational symmetry of the flow pattern can be broken are (i) by perturbing
the geometry of the apparatus, and (ii) by non-axisymmetric perturbations of the
flow field. The former case was studied in Ashwin & King (1995). After ensuring
preservation of volume, chaotic layers of mixing were found for small and large
eccentricities. At large eccentricities, stagnation points appeared in the skin friction
field on the outer cylinder and stronger mixing was observed, apparently related to
the presence of these points.

Broomhead & Ryrie (1988) investigated the effect of breaking the symmetry of the
flow field using a kinematic model consisting of a volume-preserving flow that has
some basic features of wavy vortex flow, namely a Taylor vortex-type flow super-
imposed with an oscillation in the axial direction. They found evidence for chaotic
layers of mixing, especially in the region near the cylinders and the inflow and outflow
boundaries. However, their model has only a qualitative resemblance to a solution
of the Navier–Stokes equations. As discussed in Ashwin, Mann & King (1995), this
means that they missed the possibility of the presence of ring vortices in wavy vortex
flow propagating azimuthally around the cylinder. We interpret the presence of such
ring vortices encircling the centres of the vortices as being indicative of the same sort
of mechanisms being present here as in vortex breakdown (for example, Leibovich
1978; Brown & Lopez 1990).

In order to investigate particle paths in wavy vortex and associated flows, we
consider an asymptotic model of Davey et al. (1968) giving the velocity field near the
onset of the wavy vortex instability. This uses assumptions of a small gap between
the cylinders and closeness to criticality so that a weakly nonlinear theory can be
applied. The asymptotics are in terms of a small parameter δ = d/R0 where d is the
gap and R0 is the mean radius of the two cylinders.

Section 2 introduces the necessary notation and details of the model. Section 3
briefly reviews some results from the weakly nonlinear theory, while §4 examines the
resulting particle paths for various steady flow patterns associated with instability of
Couette flow. These are interpreted with the help of the ‘flow skeleton’ (Perry & Chong
1987; MacKay 1994). In particular, the robustness of the obtained flow skeletons
to perturbations respecting the symmetries of the flow patterns lends support to the
hypothesis that the particle dynamics of the first-order flow are modelling those in
the true flow. Finally, in §5 we discuss the effects of the observed mixing in the
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flow patterns. We contrast the observed axial transport mechanisms in wavy vortex
and spiral flow. In agreement with a diffusion model we find linear growth of the
variance of an ensemble of particles near the boundaries of a wavy vortex, whereas
axial dispersion in spiral flow is typical of non-chaotic flows.

2. The model and scalings
Following the notation of Davey et al. (1968) we consider the flow between two

cylinders of infinite length and radii R1 and R2 > R1 rotating about their common
axis; we set

R0 =
R1 + R2

2
, d = R2 − R1, η =

R1

R2

and δ = d/R0.

Consider the inner cylinder rotating with angular velocity Ω1, the outer with Ω2. Set

Ω0 =
Ω1 + Ω2

2
, α = 2

(
1− µ
1 + µ

)
and µ =

Ω2

Ω1

.

Let (R, θ, Z) be cylindrical polar coordinates (the Z-axis is the common axis of the
cylinders) and (uR, uθ, uZ ) the velocity components of the fluid in these directions.
The well-known Couette solution of the incompressible Navier–Stokes equations for
a Newtonian fluid with kinematic viscosity ν in this geometry is given by

uR = uZ = 0, uθ = V (R) = AR +
B

R
(2.1)

where A and B are the constants

A =
R2

2Ω2 − R2
1Ω1

R2
2 − R2

1

= −Ω1

η2 − µ
1− η2

,

B = −R
2
1R

2
2(Ω2 − Ω1)

R2
2 − R2

1

= Ω1R
2
1

1− µ
1− η2

.

We consider perturbations (u′, v′, w′) from Couette flow. We scale the variables by
introducing dimensionless x, φ, ζ and τ:

R = R0 + xd, Z = ζd, θ =
Ω0d

2

ν
φ, t =

d2

ν
τ;

and scale the narrow-gap limit of the Couette flow velocity V (R) and the velocity
perturbations (u′, v′, w′) to give dimensionless (u, v, w):

V (x) = R0Ω0Ωl(x), u′ = − ν

αd
u, v′ = R0Ω0v, w′ = − ν

αd
w,

where

Ωl(x) = 1− αx.
We introduce the dimensionless Taylor number:

T = −4AΩ0d
4

ν2
.

It is convenient to scale ζ further by a constant λ corresponding to the scaled axial
wavelength; i.e. we define

z = λζ =
λ

d
Z.
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The particle paths for the original velocity field (uR, uθ, uZ ) are given by integrating
the vector field:

dR

dt
= uR, R

dθ

dt
= uθ,

dZ

dt
= uZ .

Changing to the coordinates (x, θ, z) the particle paths are given by solutions of

dx

dt
=

1

d
uR,

dθ

dt
=

1

R0(1 + δx)
uθ,

dz

dt
=
λ

d
uZ .

Including the above scalings and writing ẋ = dx/dτ we have, on truncating all terms
to leading order in δ,

ẋ = −u
α
, θ̇ =

d2Ω0

ν
(1− αx+ v), ż = −λw

α
.

We will deal exclusively with the case Ω2 = 0 (outer cylinder stationary) where
A = Ω1/(1− (R2/R1)

2) = −(Ω0(2− δ)2)/(4δ), giving to leading order in δ

d2Ω0

ν
=

(Tδ)1/2

2
(2.2)

and so the equations for particle paths are, to leading order

ẋ = −1

α
u, θ̇ =

(Tδ)1/2

2
(1− αx+ v), ż = −λ

α
w. (2.3)

Note that the flow (2.3) does not exactly preserve a volume element RdR dZ dθ (even
when u = v = w = 0). However, it does exactly preserve an ‘approximate’ volume
element dx dz dθ, and thus can give a qualitatively realistic model of the particle
paths. This is discussed in more detail in §2.3.

2.1. First-order approximation of the velocity perturbation

We do not discuss the model of Davey et al. (1968) in detail, nor shall we dwell on
its derivation. Basically, it considers z-periodic perturbations to the velocity field of
Couette flow that break the azimuthal symmetry. By letting δ → 0 while holding
Ω2

0R0d
3/ν2 and νθ/Ω0d

2 fixed they show that the linear modes of instability can be
written using a Fourier series expansion of the scaled perturbations u, v and w in the
z (period 2π) and the θ (period 2π/m) directions. For example,

v(x, θ, z, τ) =

∞∑
q=−∞

[
voq(x, τ) +

∞∑
n=1

(
vcnq(x, τ) cos(nz) + vsnq(x, τ) sin(nz)

)]
eiqmθ. (2.4)

They define

k = mΩ0d
2/ν,

a scaled azimuthal wavenumber such that mθ = kφ. Davey et al. restrict their
attention to the interaction of the axisymmetric q = 0, n = 1 and the q = 1, n = 1
non-axisymmetric terms. These are found to be the most highly amplified modes
close to primary instability in the limit δ → 0.
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Restricting to linear modes the equations for (u, v, w) are given by

u =Ac(τ)f20(x) cos(z) + As(τ)g20(x) sin(z)

+Bc(τ)h20(x) cos(z)eimθ + Bs(τ)l20(x) sin(z)eimθ + c.c.,

v =Ac(τ)f0(x) cos(z) + As(τ)g0(x) sin(z)

+Bc(τ)h0(x) cos(z)eimθ + Bs(τ)l0(x) sin(z)eimθ + c.c.,

w =Ac(τ)f30(x) sin(z) + As(τ)g30(x) cos(z)

+Bc(τ)h30(x) sin(z)eimθ + Bs(τ)l30(x) cos(z)eimθ + c.c.,


(2.5)

where c.c. denotes the complex conjugate. There are higher-order corrections in Ac,
· · · , Bs, but we ignore these since we are close to the onset of instability. The functions
f0, g0, h0 and l0 are found by solving the following sixth-order system of ordinary
differential equations:

M(λ, ac0, 0, T )f0 = 0, M(λ, as0, 0, T )g0 = 0,

M(λ, bc0, k, T )h0 = 0, M(λ, bs0, k, T )l0 = 0,

}
(2.6)

where

M(λ, ac0, k, T ) = N(λ, ac0, k)(D
2 − λ2)N(λ, ac0, k) + λ2TΩl(x)

and

N(λ, ac0, k) = D2 − λ2 − ac0 − ikΩl(x).

(Note that D represents d/dx.) The other components are

f20 = N(λ, ac0, 0)f0, f30 = −λ−1Df20,
g20 = N(λ, as0, 0)g0, g30 = λ−1Dg20,
h20 = N(λ, bc0, k)h0, h30 = λ−1(−Dh20 + ikαh0),
l20 = N(λ, bs0, k)l0, l30 = λ−1(Dl20 − ikαl0).

The boundary conditions for the system (2.6) implied by radial continuity and no-slip
boundary conditions are

h0 = D2h0 = N(λ, bc0, k)Dh0 = 0 at x = ± 1
2

(2.7)

with similar equations for f0 (take k = 0 and replace bc0 by ac0), g0 (take k = 0 and
replace bc0 by as0) and l0 (with bc0 replaced by bs0).

Using the axial translational symmetry of the Couette flow, the following identities
can be assumed:

as0 = ac0 = a0, bs0 = bc0 = b0,
g0 = f0, g20 = f20, g30 = −f30,
l0 = h0, l20 = h20, l30 = −h30.

2.2. Solving the boundary value problems

The boundary value problems (2.6), (2.7) were solved numerically using a Chebyshev
collocation method, NAG routine D02TGF. Given values of the parameters T , δ
and m we computed the appropriate values of a0, b0r and b0i for non-trivial solutions
of the eigenvalue problem. This is achieved by imposing a normalizing boundary
condition f0(0) = 1.0 and searching for a0 such that f0(−0.5) = 0.0.

Exact values of the derivatives of the approximate f0 are found using the NAG
routine E02AHF and hence we find the value of f0, f20, f30 at any position in the gap
between the two cylinders corresponding to x ∈ [−0.5, 0.5]. A similar procedure is
used to find g0 and h0.



346 P. Ashwin and G. P. King

2.3. Ensuring volume preservation

The continuity equation in the original variables can be written

1

R

∂

∂R
(RuR) +

1

R

∂uθ

∂θ
+
∂uZ

∂Z
= 0.

Changing variables to (x, θ, z) using the scaling discussed at the start of this Section
and multiplying by a constant, this is equivalent to

1

1 + δx

∂

∂x
((1 + δx)u)− 1

1 + δx

∂v

∂θ
+ λ

∂w

∂z
= 0.

On restricting to first order (this is justified as we truncate the solution to first order)
we obtain

∂u

∂x
− αd2Ω0

ν

∂v

∂θ
+ λ

∂w

∂z
= 0.

Finally, using identity (2.2) we have

∂u

∂x
− α(Tδ)1/2

2

∂v

∂θ
+ λ

∂w

∂z
= 0.

Note that the first-order approximation of the velocity perturbation satisfies this
first-order continuity equation exactly (cf. Ashwin & King 1995 where the first-order
approximation is in fact dissipative). Except for the radial dependence we can write
down the velocity field as an analytical expression. By using a polynomial basis for
solving the radial problem we can ensure that derivatives are exactly represented. This
means that we do not have to correct the velocity field in order to see qualitatively
correct volume-preserving behaviour of particle paths. More specifically, it means that
Poincaré recurrence will apply for the approximate flow and we can also expect to
see KAM surfaces for the approximating flows. We will not get spurious phenomena
such as ‘attractors’ for the trajectories of fluid particles.

2.4. Rotating frame of reference

By going into a frame of reference rotating at exactly the propagation velocity of a
steadily propagating flow pattern we can observe it as a time-independent flow. The
appropriate angular velocity is ω/m for waves whose time and azimuthal dependence
is exp i(mθ−ωτ) (i.e. azimuthal wavenumber m) and so we define ψ̇ = θ̇−ω/m (with
arbitrary initial conditions for ψ) and note that the velocity field is a steady flow in
the (x, ψ, z) frame of reference.

We introduce, merely for convenience of viewing the resulting trajectories, the
coordinates in the co-rotating frame

rx + iry = (1.5 + x)eiψ (2.8)

which corresponds to projection perpendicular to the axis of the coordinates in a
rotating reference frame, with an exaggeration of the gap between the cylinders.

3. Steady solutions of the amplitude equations
By restricting to the interaction of the two most unstable azimuthal modes (m = 0, 1)

Davey et al. reduce the evolution problem to a set of coupled ordinary differential
equations using a Galerkin approximation. Truncating this set of ODEs to third
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order in the amplitudes and using the axial and azimuthal symmetries they obtain

dAc
dτ

= a0Ac + a1A
3
c + a1AcA

2
s + a3Ac|Bc|2

+ a4Ac|Bs|2 + a5AsBcB̃s + ã5AcB̃cBs + . . . , (3.1)

dAs
dτ

= a0As + a1A
3
s + a1AsA

2
c + a3As|Bs|2

+ a4As|Bc|2 + a5AcBsB̃c + ã5AsB̃sBc + . . . , (3.2)

dBc
dτ

= b0Bc + b1Bc|Bc|2 + b2Bc|Bs|2 + b3BcA
2
c

+ b4BcA
2
s + (b3 − b4)BsAcAs + (b1 − b2)B̃cB

2
c + . . . , (3.3)

dBs
dτ

= b0Bs + b1Bs|Bs|2 + b2Bs|Bc|2 + b3BsA
2
s

+ b4BsA
2
c + (b3 − b4)BcAsAc + (b1 − b2)B̃sB

2
s + . . . . (3.4)

The general form of these equations can be derived from symmetry considerations
alone by considering the dynamics of a (0, 1) mode interaction for a system with
O(2)× SO(2) symmetry. This forces us to consider a six-dimensional centre manifold
(note that amplitudes A are real and B are complex) and the above equations give all
possible terms up to third order. For more details of this, see Golubitsky, Stewart &
Schaeffer (1988, Case Study 6) and Chossat & Iooss (1994).

To approximate the vector fields corresponding to steady states (in the ψ-rotating
frame) of the Navier–Stokes equations approximated above, we require values of
the coefficients a0, a1, a4, b0, b1 and b4. Approximating these coefficients requires
considerable numerical computation (see e.g. Chossat & Iooss 1994). To simplify this
we follow Krueger, Gross & DiPrima (1966) and approximate values of a1, a4 and b1

by their limiting values as k → 0 (assuming they are regular as δ → 0). The values
of b4 we use are those calculated in Davey et al. (1968, p. 39, Table 2). We remark
that in order to calculate such coefficients, large amounts of algebra and numerical
solution of non-homogeneous linear problems are necessary.

Since, as k → 0

h0 → f0, h20 → f20, h30 → f30,

by comparing terms of the same order in the higher-order equations we find that

a4 = 2a1, b1 = 3a1.

Using these approximations we obtain several families of steady solutions.

3.1. Possible flow patterns

We list the steady or uniformly rotating/translating flow patterns that can arise as
solutions of the Navier–Stokes equations near criticality. By an axial translation, we
can assume that As = 0 for all of the solutions listed below.

Couette flow

This corresponds to the trivial solution

Ac = Bc = Bs = 0,

and is stable for T < Tc.
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Taylor vortex flow
This is given by

Ac = (−a0/a1)
1/2, Bc = Bs = 0,

and is the primary instability on increasing T through Tc, the critical Taylor number.
Ribbons

(Also referred to as the non-axisymmetric simple mode in Davey et al. 1968.)
Although it is observed to always be unstable in Davey et al. (1968) there can be a
steady flow

Bc =

(
− b0r

3a1

)1/2

eiωτ, Ac = Bs = 0,

with ω = b0i. This is a primary instability of Couette flow.
Wavy vortex mode

Standard Taylor vortex flow can lose stability at higher Taylor numbers to wavy
vortices given by

Ac =

[
−
(

3a0 − 2b0r

3a1 − 2b4r

)]1/2

, Bs =

[
−
(
b0r − (b4ra0)/a1

3a1 − 2b4r

)]1/2

eiωτ, Bc = 0,

with ω = b0i − b2
4iA

2
c .

Twisted vortices
These non-axisymmetric perturbations of standard Taylor vortices retain the flat

in- and outflow boundaries of the latter. They satisfy

Ac =

[
−
(

2b0r − a0

5a1

)]1/2

, Bc =

[
−
(

3a0 − b0r

15a1

)]1/2

eiωτ, Bs = 0,

and ω = b0i. These are always observed to be unstable for the parameters examined
in Davey et al. (1968).
Spiral mode

Although spirals are not stable for the parameters investigated in Davey et al. (1968),
they can be stable at other parameter values. They are given by

Bc =

(
− b0r

4a1

)1/2

eiωτ, Bs = iBc, Ac = 0,

with ω = b0i. This is a primary instability of Couette flow.

Note that all of the above modes can be experimentally or numerically found on
varying the angular velocities of both inner and outer cylinders (see Andereck et al.
1986). In particular, twisted vortices have been reported (‘ordinary twist solution’) in
a system of co-rotating cylinders by Weisshaar, Busse & Nagata (1991) and ribbons
in a system of counter-rotating cylinders by Tagg et al. (1989). The parameters where
the Davey et al. asymptotic model is valid only display stable Couette, Taylor vortex
or wavy vortex flow.

4. Observed particle paths and flow structure
Substituting the expressions for (u, v, w) from (2.5) into (2.3) and then integrating

the equations with respect to time gives approximate particle paths for the flows.
Table 1 gives some example amplitudes of the various modes used for constructing
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Flow Ac Bc Bs ω

(a) Couette 0 0 0 –
Taylor vortex 0.3254 0 0 –
Ribbons 0 0.1833 0 −5.0480
Wavy vortex 0.3240 0 0.0216 −5.1025
Twisted vortex 0.1284 0.1202 0 −5.0480
Spiral 0 0.1588 0.1588i −5.0480

(b) Couette 0 0 0 –
Taylor vortex 0.3475 0 0 –
Ribbons 0 0.1963 0 −5.0765
Wavy vortex 0.3442 0 0.0336 −5.1380
Twisted vortex 0.1486 0.1282 0 −5.0765
Spiral 0 0.1700 0.1700i −5.0765

Table 1. Amplitudes of the various modes (As = 0) for examples of the various solutions at
δ = 0.05, µ = 0 and (a) T = 1835, (b) T = 1855, using the normalization f0(0) = h0(0) = 1. The
relevant parameter values used to compile this table are a1 = −10.035, b4 = −9.5063 + 0.7204i and
(a) a0 = 1.0627, b0 = 1.0119− 5.0480i, (b) a0 = 1.2115, b0 = 1.1602− 5.0765i.

the vector fields when the Taylor number is fixed to be (a) T = 1835, (b) T = 1855.
In both cases, δ = 0.05 and µ = 0. Only instability of the azimuthal mode m = 1 is
considered. The values for T = 1855 are used for the remainder of this section.

In order to understand the mixing properties seen in simulations, we show flow
skeletons of the investigated flows. These are ‘cartoons’ of the flow showing stagnation
points, periodic particle paths and the stable and unstable manifolds for the velocity
field

(UR,Uψ,UZ ) = (uR, uψ, uZ )/f(x)

with f(x) a function chosen to remove the singularity on the boundaries caused by the
no-slip conditions: f(x) > 0 for |x| < 0.5 and f(x) = 0 on x = ±0.5. The velocity field
on the boundary we refer to as the skin friction field. The lines marked ri are periodic
trajectories of the skin friction field, si are periodic trajectories in the fluid while the
points pi are stagnation points within the fluid. The inflow and outflow boundaries
are near z = kπ, k ∈ Z. They are invariant except for wavy vortices and spirals.
The figures summarize information gained by time-stepping near the boundaries and
searching for fixed points of the velocity field. The flow skeletons were found to
be much more informative than plots of the velocity fields. MacKay (1994) has
shown that such skeletons provide a framework to discuss transport through surfaces
bounded by trajectories contained within the flow skeleton. We note that all flow
skeletons presented can be thought of as mixtures of the pure modes – Taylor vortex
and ribbon flow.

The particle paths were computed with the package dstool of Guckenheimer et
al. (1991) using a fourth-order Runge–Kutta integrator with variable stepsize and
constant fractional error between 10−5 and 10−7. The qualitative features of the
observed particle paths are described in the following subsections.

4.1. Couette flow

For Couette flow (not illustrated), the particles move at constant x and z around the
cylinder in the θ-direction at a rate determined solely by their initial x.
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z=π

z=0

r

r2

r3

r4x=–0.5

x=0.5

w =0

w =2π

s1

Figure 1. A flow skeleton in a co-rotating frame for Taylor vortices. The cylinder has been
‘unrolled’; the flow is 2π-periodic in the ψ-direction. There are no stagnation points for almost all
rotation speeds, but there are hyperbolic periodic orbits ri for the skin firction field and elliptic
periodic orbits s1 in the fluid. At a particular co-rotating speed, s1 becomes a degenerate line
of stagnation points. The orbits r1 and r4 are repelling in the z-direction whereas r2 and r3 are
attracting in this direction. The symmetries (x, ψ, z) 7→ (x, ψ, 2π − z) and (x, ψ, z) 7→ (x, ψ, 2π + z)
mean that z = 0, π are invariant planes.

2
1

π

0

z

x– 2
1

Figure 2. Typical trajectories for three initial conditions advected by Taylor vortex flow projected
into the (x, z)-plane. This and all subsequent figures are calculated with T = 1855, δ = 0.05 and
µ = 0 (outer cylinder stationary). There is for each trajectory a uniform average propagation in the
azimuthal direction.

4.2. Taylor vortex flow

For Taylor vortex flow (flow skeleton in figure 1 and particle paths shown in figure 2
projected into the x, z-plane) almost all particle trajectories are dense on the surface
of tori. Note that the wave speed is not defined; we take the wave speed for ribbons
to allow easy comparison. A typical surface of section shows an integrable map
preserving an area form. This integrability can be thought of as resulting from the
presence of the one-parameter symmetry group SO(2) of rotations around the axis of
the cylinder. The motion in the (x, z)-plane is decoupled from that in the azimuthal
direction.
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r1

r3

p1

r5

p2

p4

r6

p3

r4

p5

p6

r2

Figure 3. Flow skeleton in the co-rotating frame for ribbon flow. The coordinates are as in figure 1.
There are invariant planes at z = kπ and associated periodic orbits for the skin friction field ri,
i = 1, · · · , 4. Since there is a symmetry (x, ψ, z) → (x, ψ + π, π − z) which maps the r1 to r3 and r2
to r4, these have the same stability and are observed to be separated by periodic orbits r5 and r6
of the skin friction field. There are elliptic stagnation points p1 and p3 and a hyperbolic stagnation
point p2. These have symmetric images at p6, p4 and p5.

4.3. Ribbons

Figure 3 shows the flow skeleton for ribbons (pure non-axisymmetric mode). Observe
that there are periodic orbits on the inner and outer skin friction fields between
the inflow and outflow boundaries. The velocity fields are similar to those found
by Tagg at al. (1989). There are two-dimensional unstable manifolds from the
boundaries into the fluid, and we expect a very complicated pattern of intersection
and folding occurring within the fluid. Indeed, for this pure non-axisymmetric mode
with Ac = As = Bs = 0, Bc 6= 0 there seems to be a large degree of mixing even at small
|Bc|. Figure 4(a, b) shows a single trajectory in two different projections. Figure 4(c)
shows the intersections of a trajectory with the surface x = 0. Figure 4(d) shows
projection onto the (ψ, z)-plane of the stagnation points p3 and p4 near the centre of
the ribbon (in the rotating reference frame). These points have linearized eigenvalues
consisting of a complex pair and a real eigenvalue whose one-dimensional manifolds
(illustrated) are observed to fill out a large region of the fluid in a complicated
manner. Note that one can see ribbon flow as a superposition of spirals of equal
amplitude and opposite handedness. The elliptic stagnation points can be thought of
as the intersections of the centres of these spirals.

4.4. Wavy vortex flow

This flow can be thought of as a perturbation of Taylor vortex flow that breaks the
rotational symmetry by imposing a modulation in the ψ-direction; we do not expect
all particle paths to be integrable. Figure 5 shows this clearly; the two-dimensional
unstable manifold of r2 will intersect the stable manifold of r1 transversely giving rise
to a homoclinic orbit and thus chaotic behaviour.

Figure 6(a) shows a trajectory of a particle on a streamtube that is a deformation
of one for Taylor vortex flow. Figure 6(b) shows another trajectory that propagates
chaotically up and down in the axial direction.

As discussed in Ashwin et al. (1995) a small slowing of the wave velocity can
cause the appearance of ring vortices propagating azimuthally around the axis and
two stagnation points near the centre of the vortex. Numerical studies of Marcus
(1984a, b) indicate that there should be stagnation points at the vortex centre in a
co-rotating frame of reference, and only on slowing the wave speed by a factor of
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Figure 4. Projections of the trajectory of a single particle in ribbon flow (a) in the (x, z)-plane,
and (b) the same trajectory in the rotating (rx, ry)-plane. (c) Shows intersections of a trajectory with
the plane x = 0. Note that it appears to fill out a large proportion of the fluid volume. (d) Two
stagnation points at the vortex centre near z = π/2, x = 0 are at p3 and p4 (cf. figure 3) and parts
of the one-dimensional manifolds from these stagnation points are shown. They are forced away
from the centerline by the unstable manifolds of stagnation points p5 and p2 towards the spiral
stagnation points p1 and p6.

about 1% can we achieve this. This is supported by evidence presented in Jones
(1985) that an effect of higher-order terms is to slow the wave speed. The possible
existence of these ‘coherent structures’ was reported in Ashwin, Mann & King (1995).
We discuss the effect the chaotic behaviour near the edges of the vortex has on axial
transport in §5.

One such pair of ring vortices is shown in figure 7 where the wave speed has been
set at ω = 5.085. We show only intersections of the particle trajectories with the
plane x = −0.03 and trajectories of three initial conditions are shown. As noted by
Broomhead & Ryrie (1988) for the case of travelling waves, there does not seem to be
a Poincaré section that intersects all particle paths. This contrasts with Ashwin et al.
(1995) where there is a fixed section that intersects all particle paths for small enough
eccentricities. Between regions of integrable behaviour there is a densely filled region
of chaotic behaviour where mixing between vortices takes place. In this investigation
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Figure 5. Flow skeleton in the co-rotating frame for wavy vortex flow. The coordinates are as in
figure 1, but a whole period of z is necessary to specify the flow. The symmetry-forced invariant
planes of Taylor vortex flow are absent, and the associated periodic orbits of the skin friction field
ri, i = 1, · · · , 4 are perturbed. An orbit connecting r2 to r1 and parts of their two-dimensional
unstable, resp. stable manifolds are illustrated. At the centre of the wavy vortex (not illustrated)
depending on the wave speed there is either an elliptic periodic orbit or stagnation points. This
flow can be thought of as Taylor vortex flow (figure 1) perturbed by low-amplitude ribbon flow
(figure 3) translated by π/2 in the z-direction.
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Figure 6. Wavy vortex flow. (a) The trajectory of a particle that remains on the surface of a
two dimensional torus which is a deformation of one corresponding to Taylor vortex flow. (b)
A trajectory of a particle near the edge of the vortex that moves up and down the cylinder in a
seemingly random manner. This is shown in the (x, z)-plane (note the exaggerated axial scale).

there seemed to be a region of almost totally integrable behaviour separated from
a region of almost totally chaotic behaviour (no observable ‘islands’ were found)
by a boundary that could be non-smooth. This is unlike the picture obtained by
Broomhead & Ryrie (1988) and also unlike that expected for small perturbations of
integrable twist maps. Whether this is significant is a question for further study.

The dependence of the wave speed of wavy vortex flow on system parameters has
been a subject of intense study (see e.g. King et al. 1984). Some careful numerical
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Figure 7. Intersection of three trajectories with a surface of section x = −0.03 for wavy vortex
flow with the wave speed slowed to give stagnation points in the rotating frame of reference. Note
the presence of two ring vortices and a deformed Taylor vortex. The interior stagnation points are
marked by + signs. Note that there is no exact symmetry that permutes the two ring vortices.
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Figure 8. Flow skeleton in the co-rotating frame for twisted vortex flow. The coordinates are as in
figure 1. There are symmetry-forced invariant planes but unlike ribbon flow, the stabilities of r2 and
r4 are different and there are no periodic orbits of the skin friction field corresponding to r5 and r6.
This flow can be seen as a mixture of the ribbon and the Taylor vortex mode. Note that increasing
the relative amplitude of the Taylor vortex mode will cause the pairs of stagnation points p1, p2

and p5, p6 to annihilate each other in saddle-node bifurcations.

simulations have been carried out by Marcus (1984a, b) and Jones (1985) and we have
compared our flow field with these. Because we are much closer to onset of waves
and do not include the nonlinear effects taken account of by Marcus, the distortion
of the co-moving surface in our velocity field is much smaller than that found by
Marcus (1984b).

The most noticeable feature on examining projections of the velocity field of wavy
vortices is that there is little obvious sign of the propagating ring vortices! This is
due to the fact that the main motion on the ring vortex consists of circulation around
the centre of the vortex on streamlines that almost close up. Only over much longer
timescales (not visible on the resolution of the velocity field plots) does the drifting
effect appear. Note that R = 1.04Rc for our model whereas R = 2.063Rc for Marcus’
calculations; moreover, we work with a very small gap apparatus. Thus, we expect
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Figure 9. (a) Typical trajectory within a twisted vortex in the (ψ, x)-plane. (b) The intersection of a
single trajectory in this flow with the plane x = 0. There appears to be a large region of mixing.

his calculations will have more energy in high-order harmonics of the fundamental
instability.

4.5. Twisted vortex mode

This steadily rotating solution of the Navier–Stokes equations has inflow and outflow
boundaries that form barriers to the vertical diffusion of fluid particles. Figure 8
shows the flow skeleton for such a flow; note that there are qualitative features
from Taylor vortices in addition to those from ribbon flow. Furthermore there is
no symmetry operation that interchanges the stagnation points p3 and p4, unlike for
ribbon flow.

Figure 9 shows a typical trajectory in twisted vortex flow. As with ribbons, and
in contrast to wavy vortices, there appear to be large regions of chaotic mixing.
We attribute this to the fact that the relative amplitude of the non-axisymmetric
perturbation to the symmetric flow is much higher for twisted vortex than for wavy
vortex flow (see table 1).

4.6. Spiral flow

The presence of a continuous symmetry of the flow pattern forces this flow to be
integrable. The continuous symmetry acts by

(x, ψ, z)→ (x, ψ + s, z − s)

where s ∈ R. This corresponds to a rotation in the azimuthal direction coupled with a
translation in the axial direction. Figure 10 shows a typical particle trajectory in this
flow; all particles propagate in the axial direction with a uniform asymptotic speed.
The speed and direction of this propagation is dependent on the initial position.

Spiral flow is the only flow that breaks the symmetry of reflection of the flow
pattern in all planes perpendicular to the axis. Thus an assumption of a periodic
velocity field does not imply that the pressure field is necessarily periodic (see §5 for
a further discussion of this).

Note that all of the above flow patterns are asymptotic solutions to the Navier–
Stokes equations at the same parameter values. However, only the wavy vortex flow is
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Figure 10. A single trajectory within spiral flow shown (a) in the (z, ψ)-plane and (b) in the
(rx, z)-plane. This particle shows a slow drift towards positive z.

0

z

0

(b)(a)

tt

z

2020

60
–60 –30

1000

Figure 11. Motion in the axial direction of (a) two particles in the axial direction under the
influence of wavy vortex flow and (b) six particles under the influence of spiral flow. Observe that
for (a) one particle (started near the boundary of the vortices) appears to follow a random walk
over large timescales whereas the other (started within a ring vortex) remains bounded within one
vortex. In (b), each particle shows uniform average propagation in the axial direction at a rate
that is dependent on the initial condition. Particles near the edge of the spiral (with multiple local
maxima) propagate downwards whereas those near the centre propagate upwards.

dynamically stable according to the calculations of Davey et al. (1968). We remark
that the integrability of the spiral and Taylor vortex flows can be inferred as an
application of results of Mezić & Wiggins (1994b).

5. Discussion and conclusions
5.1. Axial transport

As a measure of the speed of mixing between vortices in the z-direction, one can
define an average diffusion rate by averaging over an ensemble of particles (see e.g.
Broomhead & Ryrie 1988; Hydon 1994). In practice it is difficult to say how useful
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Figure 12. Temporal evolution of axial variance of ten particles started near the outside cylinder.
(a) Wavy vortex flow; this shows a typical linear growth expected in a well-mixed layer. The growth
rate is approximately 1.28 (scaled) z-units per time unit. (b) Spiral flow; this has quadratic growth
of the variance as expected for a non-chaotic laminar flow.

the measurements from this are due to the effect of, for example, periodic orbits that
propagate at non-zero mean axial velocity.

As a simple demonstration of the appearance of axial transport, figure 11 shows
time series of z for example test particles in (a) wavy vortex flow and (b) spiral flow.
Note that (a) shows a slow random-walk-like behaviour in the axial direction whereas
(b) shows relatively fast deterministic dispersion of particles, with variance scaling as
t2 (see e.g. Mezić & Wiggins 1994a). Figure 12 shows the corresponding change in
the axial variance of a group of ten particles started near the outer boundary for the
the flows in figure 11. Note the growth in variance in (a) is linear in time indicating
a well-mixed diffusion-like chaotic process; that in (b) grows quadratically as is to be
expected for integrable non-chaotic flow. In particular in the chaotic region of wavy
vortex flow any anomalous diffusion behaviour appears to be quite weak, indicating
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that cantori ‘barriers’ to the flow cause relatively little trapping in the mixing layer
between the vortices.

Axial transport in Taylor vortex and spiral flow has been experimentally and
numerically examined by F. Marquès, D. Crespo & J. Sánchez (personal communi-
cation): they identified fundamentally different mechanisms of transport: diffusion
driven for Taylor vortices and advection driven for spiral flow. We remark that Sagues
& Horsthemke (1986) have investigated axial transport for Taylor vortices under the
addition of small noisy perturbations.

5.2. Integrability of spiral flow

We now demonstrate explicitly how spiral flow can be viewed as integrable. We
assume that the azimuthal wavenumber of the spirals is m = 1. If we set

Ψ = ωt+ θ + z,

Ξ = ωt+ θ − z,
then for Bs = iBc = iB the equations for particle paths (2.3) (with time scaled by a
factor of α) can be written

ẋ = −Bh20(x)ei(z+θ+ωt) + c.c.,

θ̇ = α
(Tδ)1/2

2
(1− αx+ Bh0(x)ei(z+mθ+ωt)) + c.c.,

ż = −B(iDh20(x) + kαh0(x))ei(z+θ+ωt) + c.c.,

and so

ẋ = −Bh20(x)eiΨ + c.c.,

θ̇ = α
(Tδ)1/2

2
(1− αx+ Bh0(x)eiΨ ) + c.c.,

ż = −B(iDh20(x) + kαh0(x))eiΨ + c.c.

In the new coordinates this gives

ẋ = −Bh20(x)eiΨ + c.c.,

Ψ̇ = ω + αk(1− αx)− iBDh20(x)eiΨ + c.c.,

Ξ̇ = ω + αk(1− αx) + B(2αkh0(x) + iDh20(x))eiΨ + c.c.

Note that the equations for x and Ψ decouple from the Ξ variable: this is a
manifestation of the integrability of the flow. The equations for x and Ψ can be
written in Hamiltonian form by defining the conserved quantity

H(x,Ψ ) = ωx+ αk

(
x− αx

2

2

)
− iBh20(x)eiΨ + c.c.,

and noting that

ẋ = −∂H
∂Ψ

, Ψ̇ =
∂H

∂x
.

Given an approximation for h20(x) it is possible to calculate the level curves of H and
thereby the motion in the (x,Ψ )-plane. Note that the Ψ -independent terms mean
that the two counter-rotating spirals are not symmetrically related. One can infer that
the centres of the spiral vortices will be arranged so that one of them is closer to the
inner cylinder than the other. Such a reduction can be formulated for abstract spiral
flows in terms of the vector potential: see Marquès, Crespo & Sánchez (1995).
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5.2.1. Mean axial flow for spirals

It was noted by Edwards et al. (1991) and Raffäı & Laure (1993) that spiral flows
can have non-periodic axial pressure fields. In general, only the pressure gradient
must be periodic if the flow is periodic. The ansatz of Davey et al. (1968) is that the
velocity field is periodic. However, mean axial flow is a second-order effect, as pointed
out in Davey et al. (1968) and confirmed in numerical calculations of Marquès et al.
(1995).

The mean axial flow F through the surface z = z0 for the first-order approximation
can be easily calculated. For fixed z0 and t0 let

F =

∫
z=z0 ,t=t0

ż dx dθ

= −1

2

∫ 1/2

x=−1/2

∫ 2π

Ψ=0

(
−B(iDh20(x) + kαh0(x))eiΨ + c.c.

)
dx dΨ

= 0.

Higher-order corrections are expected to cause non-zero mean axial flow in spirals.

5.3. Conclusions

We have performed particle tracking experiments for several different steadily rotating
flow patterns in Taylor–Couette flow using the Davey et al. (1968) asymptotic model.
It is possible that the ring vortex structures and/or chaotic layers may disappear
on adding further terms in the truncation (E. Knobloch, personal communication).
However, the observed Lagrangian properties of wavy vortices in §4.4 suggest to us
that the same sort of mechanisms may be at work in the cores of Taylor vortices
at the wavy instability as are found in the classically studied problems of vortex
breakdown such as discussed in Leibovich’s (1978) review or the series of papers by
Lopez (1990), Brown & Lopez (1990) and Lopez & Perry (1992). The parallels are as
follows:

(a) Recirculating ring vortices aligned with the vorticity are created; these can
appear on smoothly moving along a path of steady solutions of the Navier–Stokes
equations and do not require any instability or bifurcation of the Eulerian flow.

(b) The closeness of the central region to integrability suggests that this is fun-
damentally an axisymmetric phenomenon as in the first stage of vortex breakdown;
it suggests that it is caused by inherent axisymmetric instability of the vortex core
rather than pure deformation of the outer regions of the vortex.

(c) The breakdown of steady vortex instability to a time-periodic flow happens in
both cases, rather than breakdown via a secondary steady instability.

Although all the non-axisymmetric flow patterns except for wavy vortex flow are
unstable at the parameter values investigated, the particle paths for unstable flows
are nevertheless interesting on two counts. Firstly, there are parameter values where
all of the studied flow patterns are observed to be stable, and this provides a guide
to possible particle behaviour in these cases. Secondly, in turbulent flow the pattern
may linger near unstable steady flow patterns of saddle type (H. K. Moffatt, personal
communication); thus the particle paths for unstable flow patterns will be important
in describing behaviour of particles in unsteady flows.

Because the Broomhead & Ryrie (1988) model for particle motion in wavy vortex
flow only considers an azimuthal symmetry-breaking perturbation in the z-component
of the velocity field, there is no possibility of their model picking up the presence of
coherent structures that are confined in the azimuthal direction. The model of Davey



360 P. Ashwin and G. P. King

et al. (1968) has components in all directions and is dependent on all variables. It has
the great advantage that it is truly (asymptotically) a solution of the Navier–Stokes
equations. The qualitative appearance of mixing between vortices in wavy vortex
flow is very similar; of course, this depends on the aspect ratio as well as the Taylor
number and there is no rigorous way to connect these parameters with the parameter
ε used by Broomhead & Ryrie.

As this study has been based on an asymptotic solution of the Navier–Stokes
equations, and since this solution necessarily increases the regions of chaotic advection
as it loses validity, it should be stressed that this is still only a guide as to what might
happen. The results of Ashwin & King (1995) on a similar asymptotic model for
Taylor vortices in an eccentric system show that on including higher-order terms
in the asymptotic expansion the pattern of chaotic mixing was only perturbed to a
small extent and this lends support to the predictions from that model. However,
in this paper there are additional approximations. Firstly, we assume that just the
Taylor vortex and m = 1 modes are important for the dynamics. Secondly we
assume the modes with identical axial wavenumber are the only important ones.
Thirdly we assume that certain third-order coefficients can be approximated by their
axisymmetric counterparts.

By performing particle tracking experiments for more accurate flow fields derived
from numerical approximations we hope that we should be able to shed more light on
mixing effects in such flows. Additionally, there are possibilities for experimental work
to locate possible ring vortex structures and compare with mixing in experimental
realizations of such flows. Theoretically, there is work to be done to clarify the reason
for the large regions of chaotic mixing for ribbons and twisted vortices.

We have investigated diagrams of vorticity and velocity fields, but up to now have
not been able to identify, for example, regions of large mixing. This is presumably
because we are not near the limit of zero viscosity (Euler flows) where, for example,
trajectories are confined to surfaces of constant helicity. What is more revealing about
the mixing behaviour than plots of velocity and vorticity is the identification of the
stagnation points, their stable and unstable manifolds and other features of the flow
skeleton. Drawing together the present study and the eccentric Taylor vortex model
(Ashwin & King 1995) we find the following.

Two integrable flows: Taylor vortices and spirals. The integrable behaviour is due
to symmetry constraints.

Three flows with a high degree of mixing throughout a vortex: ribbons, twisted
vortices, eccentric Taylor vortex with separation. The high degree of mixing is related
to the presence of stagnation points and periodic orbits whose stable and unstable
manifolds intersect in a complicated manner in the flow interior. Is there a link
between the instability of ribbons and twisted vortex flow, and their high degree of
mixing?

Two flows where near-integrable behaviour exists in the flow interior and mixing is
confined to a layer adjacent to the vortex boundary: wavy vortex flow, eccentric Taylor
vortex (small eccentricity). It has been suggested (I. Mezić, personal communication)
that the near-integrable core may be due to the flow there being close to an Euler
flow; for Euler flows the trajectories are confined to surfaces of constant helicity.

One flow with inter-vortex mixing: wavy vortex flow. In Taylor vortex flow the
vortices are separated by invariant surfaces. The onset of wavy vortex flow breaks
this connection and this gives rise to inter-vortex mixing.

Future work needs to address the question of what happens as the Reynolds number
is increased. This cannot be done with the perturbative models we have studied thus
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far. It must be done with fully nonlinear solutions obtained from simulations of the
Navier–Stokes equations. It should then be possible to begin to draw some general
conclusions about the physics of chaotic advection.
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